434 research outputs found

    Comparing the Cost-Effectiveness of Short Orthopedic Missions in Elective and Relief Situations in Developing Countries

    Get PDF
    Ó The Author(s) 2011. This article is published with open access at Springerlink.com Background The earthquake that occurred in Haiti on 12 January 2010 elicited an unprecedented response from the American orthopedic community. Many small organizations, such as Operation Rainbow, were thrust into the unfamiliar environment of relief surgery, whereas they normally provide short elective reconstruction missions in developing countries. Materials Because of the chaotic nature of relief work, it was assumed that the organization’s efforts would be less cost-effective than their usual elective work. To evaluate this conclusion, the present study was designed to compare the cost-effectiveness of the organization’s usual elective missions with the emergency relief provided in the wake of the Haiti earthquake. Results and conclusions The assumption that emergency costs would be higher was proven wrong, with estimates of 362perdisability−adjustedlife−year(DALY)avertedintheelectivegroup,and362 per disability-adjusted life-year (DALY) averted in the elective group, and 343 per DALY averted in the relief group

    Handling linkage disequilibrium in qualitative trait linkage analysis using dense SNPs: a two-step strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In affected sibling pair linkage analysis, the presence of linkage disequilibrium (LD) has been shown to lead to overestimation of the number of alleles shared identity-by-descent (IBD) among sibling pairs when parents are ungenotyped. This inflation results in spurious evidence for linkage even when the markers and the disease locus are not linked. In our study, we first theoretically evaluate how inflation in IBD probabilities leads to overestimation of a nonparametric linkage (NPL) statistic under the assumption of linkage equilibrium. Next, we propose a two-step processing strategy in order to systematically evaluate approaches to handle LD. Based on the observed inflation of expected logarithm of the odds ratio (LOD) from our theoretical exploration, we implemented our proposed two-step processing strategy. Step 1 involves three techniques to filter a dense set of markers. In step 2, we use the selected subset of markers from step 1 and apply four different methods of handling LD among dense markers: 1) marker thinning (MT); 2) recursive elimination; 3) SNPLINK; and 4) LD modeling approach in MERLIN. We evaluate relative performance of each method through simulation.</p> <p>Results</p> <p>We observed LOD score inflation only when the parents were ungenotyped. For a given number of markers, all approaches evaluated for each type of LD threshold performed similarly; however, RE approach was the only one that eliminated the LOD score bias. Our simulation results indicate a reduction of approximately 75% to complete elimination of the LOD score inflation while maintaining the information content (IC) when setting a tolerable squared correlation coefficient LD threshold (r<sup>2</sup>) above 0.3 for or 2 SNPs per cM using MT.</p> <p>Conclusion</p> <p>We have established a theoretical basis of how inflated IBD information among dense markers overestimates a NPL statistic. The two-step processing strategy serves as a useful framework to systematically evaluate relative performance of different methods to handle LD.</p

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Effects of Genetic Variants in ADCY5, GIPR, GCKR and VPS13C on Early Impairment of Glucose and Insulin Metabolism in Children

    Get PDF
    OBJECTIVE: Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children. RESEARCH DESIGN AND METHODS: We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices) by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage. RESULTS: The major allele (C) of rs2877716 (ADCY5) was nominally associated with decreased fasting plasma insulin (P = 0.008), peak insulin (P = 0.009) and increased QUICKI (P = 0.016) and Matsuda insulin sensitivity index (P = 0.013). rs17271305 (VPS13C) was nominally associated with 2 h blood glucose (P = 0.009), but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity. CONCLUSIONS: Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE-Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels.RESEARCH DESIGN AND METHODS-We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.RESULTS-Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 x 10(-26)), HFE (rs1800562/P = 2.6 x 10(-20)), TMPRSS6 (rs855791/P = 2.7 x 10(-14)), ANK1 (rs4737009/P = 6.1 x 10(-12)), SPTA1 (rs2779116/P = 2.8 x 10(-9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 x 10(-9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 x 10(-54)), MTNR1B (rs1387153/P = 4.0 X 10(-11)), GCK (rs1799884/P = 1.5 x 10(-20)) and G6PC2/ABCB11 (rs552976/P = 8.2 x 10(-18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (%HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify similar to 2% of a general white population screened for diabetes with HbA(1c).CONCLUSIONS-GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c) Diabetes 59: 3229-3239, 201

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis

    Get PDF
    Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS

    C-Reactive Protein (CRP) Gene Polymorphisms, CRP Levels, and Risk of Incident Coronary Heart Disease in Two Nested Case-Control Studies

    Get PDF
    Background: C-reactive protein (CRP), an acute phase reactant and marker of inflammation, has been shown to predict risk of incident cardiovascular events. However, few studies have comprehensively examined six common single-nucleotide polymorphisms (SNPs) in the CRP gene, haplotypes, and plasma CRP levels with risk of coronary heart disease (CHD). Methods and Findings: We conducted parallel nested case-control studies within two ongoing, prospective cohort studies of U.S. women (Nurses' Health Study) and men (Health Professionals Follow-up Study). Blood samples were available in a subset of 32,826 women and 18,225 men for biomarker and DNA analyses. During 8 and 6 years of follow-up, 249 women and 266 men developed incident nonfatal myocardial infarction or fatal CHD, and controls (498 women, 531 men) were matched 2:1 on age, smoking, and date of blood draw from participants free of cardiovascular disease at the time the case was diagnosed. Among both women and men, minor alleles were significantly associated with higher CRP levels for SNPs 1919A greater than T and 4741G greater than C, but associated with lower CRP levels for SNPs 2667G greater than C and 3872C greater than T. SNP 2667G greater than C was individually associated with increased risk of CHD in both women [OR 1.57 (95% CI 1.01–2.44); p = 0.047] and men [1.93 (95% CI 1.30–2.88); p = 0.001]. Two of the five common haplotypes were associated with lower CRP levels, and Haplotype 4 which included minor alleles for 2667 and 3872 was associated with significantly lower CRP levels and an elevated risk of CHD. The remaining SNPs or haplotypes were not associated with CHD in both populations. Conclusions: Common variation in the CRP gene was significantly associated with plasma CRP levels; however, the association between common SNPs and CRP levels did not correspond to a predicted change in CHD risk. The underlying inflammatory processes which predict coronary events cannot be captured solely by variation in the CRP gene

    Shape - but Not Size - Codivergence between Male and Female Copulatory Structures in Onthophagus Beetles

    Get PDF
    Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs
    • …
    corecore